Tuesday Feature Episode 35: Holly Shiels

This week we’re featuring Dr Holly Shiels – a senior lecturer in cardiac physiology. Without any further introduction, let’s get right into it.


Please explain your research for the general public in around 10 sentences or less

Survival of nearly all vertebrate animals depends on maintained cardiac function. Environmental changes, such as temperature and oxygen fluctuations, can dramatically affect the ability of the heart to maintain normal function. To this end, we explore strategies of cardiac adaptation that permit maintenance of heart function in ectotherms living in fluctuating environments. We try to understand this across levels of biological organisation and in a range of species including tuna, trout, turtle, caiman, zebrafish, catfish, varanid lizard, rat and hamster and even human!

What benefit does your research give to the people reading this blog?

Recently we have been working on the effect of oil spill pollutants on the hearts of fish.  This is important for understanding the implications of environmental disasters on aquatic species. Fish have a number of uses for humans – from food, sport and hobbies to thriving ecosystems which help sustain the environment here on Earth.

How did you first become interested in your research area?

During my PhD I had my first chance to work on large pelagic fish like tuna and swordfish.  These animals move through thermoclines and hypoxic zones in the ocean and their heart beats throughout.  I found this fascinating and am still trying to understand how they do it today!

Did you have any science heroes growing up? Who inspired you to do science?

Growing up in Canada there was a TV program called ‘The Nature of Things’  it was hosted by an Environmental Science Professor at the University of British Columbia called David Suzuki.  I liked it because it presented nature and the impact humans were having on it.  This was a novel approach for nature documentaries in the 70s and it made me think that I had a responsibility to understand mechanisms of environmental adaption.

How has working here in Manchester helped you?

Manchester is a large institution with excellent facilities that attract world class scientists in nearly every discipline.  This is a great benefit as it means the questions I can ask in my research are nearly endless; there will always be the equipment and know-how to address interesting questions.

What do you do outside of work?

I enjoy time with my family and friends.


Tuesday Feature Episode 17: Qing-Jun Meng

Qing-Jun Meng has been no stranger to the media over the last few weeks. Having recently been part of a duo that were awarded a grant worth over £1 million from Arthritis UK, Qing-Jun has since appeared on BBC Radio Manchester and on the brand new channel That’s Manchester to talk about his research. (You can watch the TV segment here: https://www.youtube.com/watch?v=mu-x2I6VcL4) All of this interview practice should mean he can give a great Tuesday Feature interview! Read on to find out if all the practice was worth it. (Spoiler: It was!)

Please explain your research for the layman in ten sentences or less.

I work on body clocks – 24 hour rhythms and how they change with age. I look at how these changes could contribute to age-related diseases. One tissue of particular interest to me is cartilage in the joint right at the surface of your long bones. We’ve discovered recently that even these cartilage tissues and cells contain functional clocks and these clocks seem to be important in the homeostasis of this tissue, and presumably in aging, the disruption of circadian rhythms could be an underlying risk factor for developing osteoarthritis.

DSC_0400How could your research benefit the person reading this blog?

Osteoarthritis affects about 8 million people in the UK and 27 million in the US – it’s a big big problem and there’s very little we can do to help at the moment. We can offer pain killers and at later stages joint replacement. There are approaches, like regenerative medicine, which are undergoing intense investigation which could help with treatment. But overall, we know very little about how the disease initiates and develops so we are hoping that our research into body clocks could help understand the disease and hopefully lead to some treatments which could help slow down the (progression of) symptoms and eventually cure the disease.

How did you first become interested in your area of research?

In terms of body clocks, when I was teaching in China, one of the lectures I gave was on body clocks. It was on jetlag and how we tune our own internal rhythm to the environment. When I came to England I took the first opportunity I could to embark on a field in chronobiology. Then in 2007 I went to a conference in Cold Spring Harbour on Chronobiology and that really inspired me to start a career in this particular field, because I realised that there were so many things you could do in this area. I thought, maybe I could make a contribution to the understanding of body clocks.

Do you have any science heroes? Who inspired you?

Yes. If you ever go to some of my lectures or talks, I always start with a story. It’s a true story that happened in Professor Ueli Schibler’s lab, he is one of the pioneers of the modern clock field. He made many important discoveries about body clocks. For example, one of the discoveries was that almost all of the cells, including the most common cell type (fibroblasts), contain autonomous clocks. He also found that temperature cycles can entrain your body clocks as well. There are many examples of that. In many ways his discoveries have inspired me to research this topic.

How has working here in Manchester helped you? 
I think that this is a great environment to do science. I came to Manchester about 12 years ago and never left. I did my post-doc here and got my MRC fellowship (based) here, and now I got my Arthritis Research UK senior research fellowship (based) here. I think the excellent support I received from the Faculty, the Wellcome Trust Centre for Cell Matrix Research and colleagues has been incredible. I have a lot of excellent collaborators who are all very enthusiastic about their own science and are also very keen to help me in my career progression. They are happy to collaborate with me in terms of tackling big, challenging questions in the field.

What do you do outside of working here?

I like playing guitar and I play table tennis as well. I ice-skate and I like to go to the field to do field trips like hiking.