Mind the gap – new insight could lead to more effective drug treatments

Faculty researcher Professor Dan Davis has made a discovery that could improve drug treatments. Alongside his team at the Manchester Collaborative Centre for Inflammation Research (MCCIR), Professor Davis was investigating how different types of immune cells communicate with each other and how they kill cancerous or infected cells. Professor Davis says:

“We studied the immune system and stumbled across something that may explain why some drugs don’t work as well as hoped. We found that immune cells secrete molecules to other cells across a very small gap. This happens when immune cells talk to each other, and also when they kill diseased cells. But crucially, some types of drugs aren’t able to penetrate the gap between the cells. So they can’t easily reach targets within the gap and work effectively.”

Comparing molecules of different sizes, the team used microscopic imaging to see which ones could fit into the gap between an immune cell and another cell. Only the smaller molecules could penetrate the gap. They even found that when an immune cell attaches itself to another cell, it clears out all but the smallest molecules between them. Professor Davis explains:

“Our research demonstrates that any drugs targeting immune cells need to be very small. Antibody proteins, for example, are too big. They aren’t able to get into the gap between the cells – they’re even cleared away when cells meet. To make them more effective they must be smaller – which is something that GSK (GlaxoSmithKline) are working on.”

PhD student Adam Cartwright played a key role in the research, splitting his time between Professor’s Davis’s lab and GSK. He says:

“Being able to test out our theory with medicines that GSK has designed was fantastic.  The idea that something I found out can be used to develop treatments to help patients is incredibly exciting.”