pulmonary-fibrosisFaculty research has shown that the body clock’s natural rhythm could be utilised to improve therapies that delay the onset of chronic lung disease. Dr Qing-Jun Meng and his team have discovered a rhythmic defence pathway in the lung, controlled by our body clocks, which is essential to combatting exposure to toxins and pollutants.

The team have found that the circadian clock in the mouse lung rhythmically switches genes on and off, controlling the antioxidant defence pathway. This 24-hourly rhythm enables the lungs to anticipate and withstand exposure to pollutants on a daily basis. Dr Meng said:

“We used a mouse model that mimics human pulmonary fibrosis, and found that an oxidative and fibrotic challenge delivered to the lungs during the night phase, when mice are active, causes more severe lung damages than the same challenge administered during the day, a mouse’s resting phase. Our findings show that timed administration of the antioxidant compound sulforaphane effectively attenuates the severity of the lung fibrosis in this mouse model.”

The research suggests that paying attention to the lung clock could increase the effectiveness of drug treatments for oxidative and fibrotic diseases, allowing for lower doses and reduced side effects.

Research team member Dr Vanja Pekovic-Vaughan said:

“This research is the first to show that a functioning clock in the lung is essential to maintain the protective tissue function against oxidative stress and fibrotic challenges. We envisage a scenario whereby chronic rhythm disruption (during ageing or shift work, for example) may compromise the temporal coordination of the antioxidant pathway, contributing to human disease.”

This study is a part of ongoing research exploring how chronic disruption to body clocks contributes to conditions such as osteoarthritis, cardiovascular disease, breast cancer, and mood disorder. Dr Meng said:

“Our next step is to test our theory that similar rhythmic activity of the antioxidant defence pathway also operates in human lungs.  This will enable us to translate our findings and identify the proper clock time to treat chronic lung diseases that are known to involve oxidative stress.”

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s